64 research outputs found

    The primacy of multiparametric MRI in men with suspected prostate cancer

    Get PDF
    Background: Multiparametric MRI (mpMRI) became recognised in investigating those with suspected prostate cancer between 2010 and 2012; in the USA, the preventative task force moratorium on PSA screening was a strong catalyst. In a few short years, it has been adopted into daily urological and oncological practice. The pace of clinical uptake, born along by countless papers proclaiming high accuracy in detecting clinically significant prostate cancer, has sparked much debate about the timing of mpMRI within the traditional biopsy-driven clinical pathways. There are strongly held opposing views on using mpMRI as a triage test regarding the need for biopsy and/or guiding the biopsy pattern. Objective: To review the evidence base and present a position paper on the role of mpMRI in the diagnosis and management of prostate cancer. Methods: A subgroup of experts from the ESUR Prostate MRI Working Group conducted literature review and face to face and electronic exchanges to draw up a position statement. Results: This paper considers diagnostic strategies for clinically significant prostate cancer; current national and international guidance; the impact of pre-biopsy mpMRI in detection of clinically significant and clinically insignificant neoplasms; the impact of pre-biopsy mpMRI on biopsy strategies and targeting; the notion of mpMRI within a wider risk evaluation on a patient by patient basis; the problems that beset mpMRI including inter-observer variability. Conclusions: The paper concludes with a set of suggestions for using mpMRI to influence who to biopsy and who not to biopsy at diagnosis. Key Points: • Adopt mpMRI as the first, and primary, investigation in the workup of men with suspected prostate cancer. • PI-RADS assessment categories 1 and 2 have a high negative predictive value in excluding significant disease, and systematic biopsy may be postponed, especially in men with low-risk of disease following additional risk stratification. • PI-RADS assessment category lesions 4 and 5 should be targeted; PI-RADS assessment category lesion 3 may be biopsied as a target, as part of systematic biopsies or may be observed depending on risk stratification

    Pitfalls in Interpreting mp-MRI of the Prostate: A Pictorial Review with Pathologic Correlation

    Get PDF
    Objectives: The purpose of this pictorial review is to present a wide spectrum of prostate multiparametric MRI (mp-MRI) pitfalls that may occur in clinical practice, with radiological and pathological correlation. Methods: All examinations were performed according to ESUR Guidelines protocols. Results and Conclusion: mp-MRI imaging of the prostate often leads to interpreting doubts and misdiagnosis due to the many interpretative pitfalls that a tissue, whether healthy or treated, may cause. These “false-positive” findings may occur in each stage of the disease history, from the primary diagnosis and staging, to the post-treatment stage, and whether they are caused by the tissue itself or are iatrogenic, their recognition is critical for proper treatment and management. Knowledge of these known pitfalls and their interpretation in the anatomical-radiological context can help radiologists avoid misdiagnosis and consequently mistreatment. Main Messages: • Some physiological changes in the peripheral and central zone may simulate prostate cancer. • Technical errors, such as mispositioned endorectal coils, can affect the mp-MRI interpretation. • Physiological changes post-treatment can simulate recurrenc

    An update of pitfalls in prostate mpMRI: a practical approach through the lens of PI-RADS v. 2 guidelines

    Get PDF
    ObJECTIVES: The aim of the current report is to provide an update in the imaging interpretation of prostate cancer on multiparametric magnetic resonance imaging (mpMRI), with a special focus on how to discriminate pathological tissue from the most common pitfalls that may be encountered during daily clinical practice using the Prostate Imaging Reporting and Data System (PI-RADS) version 2 guidelines. METHODS: All the cases that are shown in this pictorial review comply with the European Society of Urogenital Radiology (ESUR) guidelines for technical mpMRI requirements. RESULTS: Despite the standardised manner to report mpMRI (PI-RADS v. 2), some para-physiologic appearances of the prostate can mimic cancer. As such, it is crucial to be aware of these pitfalls, in order to avoid the under/overestimation of prostate cancer. CONCLUSIONS: A detailed knowledge of normal and abnormal findings in mpMRI of the prostate is pivotal for an accurate management of the wide spectrum of clinical scenarios that radiologists may encounter during their daily practice. TEACHING POINTS: • Some para-physiologic appearances of the prostate may mimic cancer. • Knowledge of normal and abnormal findings in prostate mpMRI is pivotal. • Any radiologist involved in prostate mpMRI reporting should be aware of pitfalls

    Clinical and imaging tools in the early diagnosis of prostate cancer, a review

    Get PDF
    Measurement of serum Prostate Specific Antigen (PSA) level is useful to detect early prostate cancer. PSA-screening may reduce the mortality rate from prostate cancer, but this is associated with a high rate of overdiagnosis and overtreatment. To improve the detection of clinically significant cancers, several auxiliary clinical and imaging tools can be used. The absolute PSA value can be complemented with parameters such as PSA velocity, PSA density and free/total PSA. Transrectal Ultrasound (TRUS) has only moderate accuracy in the detection of prostate carcinoma, but is very useful in the estimation of prostate volume and thus calculation of PSA-density. The role of Magnetic Resonance Imaging (MRI) in diagnosis and staging of prostate carcinoma is rapidly increasing. Morphologic T2- weighted MR images (T2-WI), preferably with an endorectal coil, depict the prostatic anatomy with high resolution and can detect tumoral areas within the peripheral zone of the prostate. Addition of MR spectroscopic imaging (MRSI), dynamic contrast enhanced MRI (DCE-MRI) and/or diffusion weighted imaging (DWI) further increase the diagnostic performance of MRI. The gold standard for diagnosis of prostate carcinoma is histological assessment obtained by transrectal ultrasound-guided systematic core needle biopsy. In the future, imaging-based targeted biopsies may improve the biopsy yield and decrease the number of biopsy cores. Computed Tomography (CT) and positron emission tomography (PET) have no value in early prostate cancer detection and the indications are limited to lymph node staging and detection of distant metastases

    Role of multiparametric magnetic resonance imaging in early detection of prostate cancer.

    Get PDF
    UNLABELLED: Most prostate cancers (PC) are currently found on the basis of an elevated PSA, although this biomarker has only moderate accuracy. Histological confirmation is traditionally obtained by random transrectal ultrasound guided biopsy, but this approach may underestimate PC. It is generally accepted that a clinically significant PC requires treatment, but in case of an non-significant PC, deferment of treatment and inclusion in an active surveillance program is a valid option. The implementation of multiparametric magnetic resonance imaging (mpMRI) into a screening program may reduce the risk of overdetection of non-significant PC and improve the early detection of clinically significant PC. A mpMRI consists of T2-weighted images supplemented with diffusion-weighted imaging, dynamic contrast enhanced imaging, and/or magnetic resonance spectroscopic imaging and is preferably performed and reported according to the uniform quality standards of the Prostate Imaging Reporting and Data System (PIRADS). International guidelines currently recommend mpMRI in patients with persistently rising PSA and previous negative biopsies, but mpMRI may also be used before first biopsy to improve the biopsy yield by targeting suspicious lesions or to assist in the selection of low-risk patients in whom consideration could be given for surveillance. TEACHING POINTS: ? MpMRI may be used to detect or exclude significant prostate cancer. ? MpMRI can guide targeted rebiopsy in patients with previous negative biopsies. ? In patients with negative mpMRI consideration could be given for surveillance. ? MpMRI may add valuable information for the optimal treatment selection

    MRI-targeted or standard biopsy for prostate-cancer diagnosis

    Get PDF
    Background Multiparametric magnetic resonance imaging (MRI), with or without targeted biopsy, is an alternative to standard transrectal ultrasonography-guided biopsy for prostate-cancer detection in men with a raised prostate-specific antigen level who have not undergone biopsy. However, comparative evidence is limited. Methods In a multicenter, randomized, noninferiority trial, we assigned men with a clinical suspicion of prostate cancer who had not undergone biopsy previously to undergo MRI, with or without targeted biopsy, or standard transrectal ultrasonography-guided biopsy. Men in the MRI-targeted biopsy group underwent a targeted biopsy (without standard biopsy cores) if the MRI was suggestive of prostate cancer; men whose MRI results were not suggestive of prostate cancer were not offered biopsy. Standard biopsy was a 10-to-12-core, transrectal ultrasonography-guided biopsy. The primary outcome was the proportion of men who received a diagnosis of clinically significant cancer. Secondary outcomes included the proportion of men who received a diagnosis of clinically insignificant cancer. Results A total of 500 men underwent randomization. In the MRI-targeted biopsy group, 71 of 252 men (28%) had MRI results that were not suggestive of prostate cancer, so they did not undergo biopsy. Clinically significant cancer was detected in 95 men (38%) in the MRI-targeted biopsy group, as compared with 64 of 248 (26%) in the standard-biopsy group (adjusted difference, 12 percentage points; 95% confidence interval [CI], 4 to 20; P=0.005). MRI, with or without targeted biopsy, was noninferior to standard biopsy, and the 95% confidence interval indicated the superiority of this strategy over standard biopsy. Fewer men in the MRI-targeted biopsy group than in the standard-biopsy group received a diagnosis of clinically insignificant cancer (adjusted difference, -13 percentage points; 95% CI, -19 to -7; P<0.001). Conclusions The use of risk assessment with MRI before biopsy and MRI-targeted biopsy was superior to standard transrectal ultrasonography-guided biopsy in men at clinical risk for prostate cancer who had not undergone biopsy previously. (Funded by the National Institute for Health Research and the European Association of Urology Research Foundation; PRECISION ClinicalTrials.gov number, NCT02380027 .)

    ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training

    Get PDF
    Objectives: This study aims to define consensus-based criteria for acquiring and reporting prostate MRI and establishing prerequisites for image quality. Methods: A total of 44 leading urologists and urogenital radiologists who are experts in prostate cancer imaging from the European Society of Urogenital Radiology (ESUR) and EAU Section of Urologic Imaging (ESUI) participated in a Delphi consensus process. Panellists completed two rounds of questionnaires with 55 items under three headings: image quality assessment, interpretation and reporting, and radiologists’ experience plus training centres. Of 55 questions, 31 were rated for agreement on a 9-point scale, and 24 were multiple-choice or open. For agreement items, there was consensus agreement with an agreement ≥ 70% (score 7–9) and disa

    SP-0105: The role of MRI in active surveillance

    No full text
    corecore